THE MOLECULAR AND CRYSTAL STRUCTURE OF 2α -BROMOARBORINONE

THE STRUCTURE OF THE TRITERPENE ARBORINOL

O. KENNARD^{*} and L. RIVA DI SANSEVERINO[†] University Chemical Laboratory, Cambridge, England

and

J. S. ROLLETT Oxford University Computing Laboratory, England

(Received 30 March 1966)

Abstract—The molecular structure and stereochemistry of the triterpene arborinol was obtained from a three-dimensional X-ray diffraction study of 2α -bromoarborinone. The molecule is shown to be pentacyclic with a 13β , $14\alpha trans$ configuration of the methyl groups at the C/D ring junction, not previously found among pentacyclic triterpenes. The space group is $P2_12_12_1$, with four molecules in the unit cell: $a = 12.84 \ b = 8.68 \ c = 22.46 \ Å$. The value of $R = (\Sigma |Fo| - |Fc|)/\Sigma |Fo|$ is 12.4% for 1719 observed reflections.

The implications of the structure for the fernene-group of triterpenes are discussed.

RECENTLY, two new triterpene alcohols, arborinol together with its 3-epimer isoarborinol were isolated from the leaves of *Glycosmis arborea* (Rutaceae) by Djerassi *et al.*¹ On basis of chemical reactions and a variety of physical measurements including NMR, ORD and mass spectroscopy they deduced that it was a pentacyclic compound with ring structure A, B and C as indicated in 1 and showed by NMR evidence the

IV 2a-Bromoarborinone

- * External Scientific Staff, Medical Research Council.
- † Present address: Istituto di Mineralogia, Piazza Porta San Donato 1, Bologna, Italy.
- ¹ H. Vorbrüggen, S. C. Pakrashi and C. Djerassi, Liebigs Ann. 668, 57 (1963).

presence of two secondary and a t-methyl groups in rings D and E. The $13\beta/14\alpha$ trans configuration of the methyl groups at the C/D ring junction deduced by these authors represents an arrangement not previously observed amongst pentacyclic triterpenes and is of considerable biogenetic interest. Since there was insufficient material available to elucidate the full structure of the molecule, we undertook at Professor Djerassi's suggestion the investigation of the structure of arborinol through a three-dimensional X-ray diffraction analysis of the heavy atom derivative 2α -bromoarborinone, prepared for us by Dr. H. Vorbrüggen. The X-ray analysis required only a few milligrams of material. It was deliberately designed to involve minimal assumption about the chemical structure of the molecule so as to provide evidence independent of previous suggestions about the structure of this group of triterpenes.

The X-ray analysis fully confirmed the structure proposed by Djerassi *et al.*¹ and established the position of the remaining atoms in the molecule of 2α -bromoarborinone as indicated in IV. The unusual 13β , 14α trans configuration at the C/D ring junction was verified and interatomic distances accurate to about ± 0.05 Å obtained. A preliminary report on the more chemical aspects of this investigation has already been published.²

Since cylindrin^{3.4} has been shown to be the 3-methyl ether of isoarborinol its full structure can now be written as V.

Cylindrin was obtained by Natori et $al.^{3.4}$ from the rhizomes of *Imperata cylindrica* together with a stereoisomeric triterpene arundoin (VI) which was also isolated by Eglinton et al.⁵ from arundo conspicua. The occurrence of cylindrin (V) and arundoin (VI) in the same plant is biogenetically interesting, since the compounds have an

- ⁸ O. Kennard, L. Riva di Sanseverino, C. Djerassi and H. Vorbrüggen, *Tetrahedron Letters* 3433 (1965).
- * K. Nishimoto, M. Ito, S. Natori and T. Ohmoto, Tetrahedron Letters 2265 (1965)
- T. Ohmoto, K. Nishimoto, M. Ito and S. Natori, Chem. Pharm. Bull. Japan 13, 224 (1965).
- ⁴ G. Eglinton, R. S. Hamilton, M. Martin-Smith, S. Smith and G. Subramanian, *Tetrahedron Letters* 2323 (1964).

"antipodal" configuration of rings C, D and E. This "antipodal" steric arrangement of the ring skeleton present in arundoin is also found in fernene (VII), isolated by Ageta *et al.*⁶ from *Dryopteris Crassirhizoma* Nakai (Aspidiaceae), and davallic acid (VIII), isolated by Nakanishi *et al.*⁷ from the rhizomes of a fern *Davallia divaricata*. It is obvious that the spacial relationships in rings C, D and E as derived from our X-ray determination can be compared with those of the corresponding rings of the "antipodal" fernene-group of triterpenes.

Biogenetically, arborinols can be postulated to be formed by a squalene cyclization process involving an intermediary precursor (IX) with ring B in the boat form, followed by a concerted rearrangement to the arborinols (X). Such a boat form is indeed present in the antibiotic fusidic acid (XI) whose correct structure was deduced by Godtfredsen *et al.*^{8,9} and firmly established by an X-ray analysis of the crystal structure of fusidic acid bromobenzoate methyl ester by Cooper.¹⁰

EXPERIMENTAL

A heavy atom derivative of arborinol, 2α -bromoarborinone, was prepared by Dr. H. Vorbrüggen at the Woodward Research Institute, Basel, using a method described previously.¹ It was recrystallized from hexane, needles m.p. 217-220°., which were homogeneous on TLC (silica plate, benzene-hexane (1:1) $R_f = 0.58$). Slow evaporation of a solution of pure bromo-ketone in methylene chloride-hexane resulted in the larger crystals, which were used for the X-ray determination.

Crystal data. 2α -Bromoarborinone, $C_{30}H_{47}OBr$, mol. wt = 503·3, m.p. 219-220°. Provenance: see Ref. 1. Orthorhombic, thick dipyramidal. Twinning common. $a = 12\cdot84 \pm 1$, $b = 8\cdot68 \pm 1$, $c = 22\cdot46 \pm 4$ Å. V = 2513 Å³. Density measured by flotation 1·39 gm. cm⁻³. Z = 4. $D_{case} =$ 1·34 gm. cm⁻³. Ni filtered Cu radiation: $\lambda x_1 = 1\cdot5403$ Å $\lambda x_2 = 1\cdot5443$ Å. Cell dimensions calculated from the separation of $\alpha_1 \alpha_2$ doublets on Weissenberg photographs.¹¹ Space group P2₁2₁2₁ from absences. $\mu = 27\cdot2$ cm⁻¹. F(000) = 1080.

Intensity data were collected from an approximately cylindrical crystal 0-60 mm long and 0-40 mm in cross-section, prepared by manual grinding. A series of equi-inclination Weissenberg photographs for layers 0-6 were taken about the *b* axis, which enabled the exploration of 76% of the copper sphere. Intensities from multiple film packs were matched visually against a scale prepared from the same crystal. Different layers were put on a common scale by comparison with the 0kl reflections. Altogether 1719 non-zero reflections were observed representing 62% of the total number of possible reflections obtainable with Cu radiation.

The observed intensities were corrected for spot-shape and Lorentz-polarization factors using a programme by Dr. H. J. Milledge. The square roots of these values, on the appropriate scale, were used in the subsequent structure factor calculations. No absorption corrections were applied.

STRUCTURE DETERMINATION

The gross structure was solved by the application of the heavy atom method. Conventionally, using this method, the heavy atoms are first located from a Patterson map, the observed structure factors are phased and a Fourier map is calculated. Such a map will contain in addition to large peaks due to the heavy atoms smaller peaks some of which may correspond to the lighter atoms in the molecule. A number of

- ⁶ H. Ageta, K. Iwata and S. Natori, Tetrahedron Letters 1447 (1963).
- ⁷ K. Nakanishi, Y. Y. Lin, H. Kakisawa, H. Y. Hsü and H. C. Hsin, *Tetrahedron Letters* 1451 (1963).
- ^{*} D. Arigoni, W. von Daehne, W. B. Godtfredsen, A. Maleia and S. Vangedal, *Experientia* 20, 347 (1964).
- W. O. Godtfredsen, W. von Daehne, S. Vangedal, A. Marquet, D. Arigoni and A. Melera, *Tetrahedron* 21, 3505 (1965).
- ¹⁰ A. Cooper, Tetrahedron 22, 1379 (1966).
- ¹¹ P. Main and M. M. Woolfson, Acta Cryst. 16, 731 (1963).

IX.

peaks are selected using various criteria, including the known or probable chemical features of the molecule, and a new set of phase angles is calculated. The progress of the analysis is indicated by a decrease in the value of the disagreement factor R, defined as $(\Sigma |Fo| - |Fc|)/\Sigma |Fo|$ which is about 59% for a random non-centro-symmetric arrangement of atoms.¹³

The above method was condensed and made more objective by the use, in the present investigation, of the series of calculations embodied in the computer programme "FATAL" which will be described more fully elsewhere, in connection with

Іпри	<i>ı</i> "O"
Unit cell dimensions, symmetry, form factors Instructions for computing Fourier map Scale factor K for structure factors F. List of scattering amplitudes with their indices (planes list)	Value of electron density $\rho(xyz)$ minimum Values of constants <i>a</i> and <i>b</i> for F ₀ output Co-ordinates of heavy atom
Calculations	Онгрыг
1. Structure factors $F_o \rightarrow$	F ₀ & F ₀ if $\Delta F > a$ or $\Delta F/F > b$ Values of K and R for batches of 120 reflexions and totals
 F_e synthesis with phases of F_e from 1 above. Store 	
 Scanning of electron → density peaks 	Coordinates x, y, z and peak heights $\rho(xyz)$ if $\rho(xyz) > \rho_{\min}(xyz)$
4. Distances (d) \rightarrow between peaks $\rho(xyz)$	d if < 3 Å
Input '	'O'' + I
Data as in input O, but with coordinates s factors and new K	elected from output 3 with appropriate form and B from output 1.

TABLE I. FLOWSHEET SHOWING LAYOUT OF FATAL CALCULATE	TABLE	FLOWSHEET SHO	WING LAYOUT OF	"FATAL"	CALCULATION
--	-------	---------------	----------------	---------	-------------

their work on automatic heavy-atom analysis, by Hodgson, Rollett and Stonebridge. This approach involves minimal chemical assumptions other than the existence of discrete atoms. The flowchart of the calculations is shown in Table 1. Essentially the programme supplies the user at each stage of the calculation with a list of coordinates corresponding to peaks above a preset minimum value and the distances between neighbouring peaks. Atomic sites to be included in the next stage of the calculation are selected from this list using as chief criteria the peak heights and inter peak distances. If a true atomic site is chosen the electron density will probably increase—false peaks remain stationary or actually decrease in value. The scale factor K relating experimental and calculated values of structure factors is gradually improved and so is the disagreement factor R. The cyclic process is repeated till all atoms are located.

In the present investigation the position of the Br atoms was determined from a FATAL Patterson calculation obtained by placing a hypothetical atom at (000) for the phasing calculation. Three peak positions, lying in the Harker sections $\frac{1}{2}$, y, z; x, $\frac{1}{2}$, z; and x, y, $\frac{1}{2}$; were obtained giving as fractional bromine co-ordinates x = 0.030, y = 0.25, z = 0.041. However, structure factor calculations with these parameters gave R = 58% which dropped to 45% when the fractional y co-ordinate was changed ¹¹ A. J. C. Wilson, Acta Cryst. 3, 397 (1950).

to 0.21 on the assumption that the peaks indicating y = 0.25 were due to the superposition of pairs of vector peaks on either side of the symmetry planes.

When the peak positions from this calculation (F1) were plotted out the molecular skeleton was not evident, and an apparently unrelated set consisting of 10 of the highest peaks (those above $3e/A^3$) was selected for the next cycle F2, (B = 3.5, K = 450, R = 41%). One of these was later shown to be a spurious atom (Peak S, Fig. 1).

At this stage the main outline of the molecular skeleton emerged as three six membered rings and a five membered ring with some substituents (Fig. 1). The peak

Fig. 1. The molecular skeleton of 2α -bromoarborinone as seen from the plot of peak positions obtained from the Fourier map phased on 1 Br and 10 carbon atoms in FATAL cycle F2.

- Carbon atoms used as input for F2.
- Additional carbon atoms used as input for F3.
- O Additional atoms used in input F4-F6.

Interpeak distances in Å units. Peak height, inside circle in arbitrary units of electron/ A^{-3} . The peak representing bromine is omitted.

heights defining the five membered ring were comparatively low and to avoid any bias in the calculation, these were not included in the next cycle. However, they still reappeared in F3 (B = 5.5, K = 450, R = 38%), and the highest peak position of this set was now added together with two peaks completing the last six membered ring and some further substituents. At F4 (B = 5.5, K = 390, R = 31.6%) two positions were removed from the calculation one of which was a false atom (S, Fig. 1 which had decreased in height from 7.6 to 5.1 e/A³ and was not close to any other site selected) while the other reappeared together with the two remaining atoms of the isopropyl group in F5. In F5 were also included the two atoms completing the five membered ring and one further atom attached to ring A. This was recognised to be an oxygen atom from the short distance to the nearest peak and the planarity of the surrounding group. With all atoms of the molecule accounted for the reliability factor was 26.4%, and there were no peaks above $2 e/A^3$ in height except those at sites used for the phases of Fcalc, where all peaks were above $4.5 e/A^3$.

It would be a hindrance to lay down exact rules for analyses of this type. In the present case no site was accepted unless the peak found was higher than 2.5 e/A^3 , until the last stage when two methyl carbon atoms were included because of peaks of 2.0 and 2.4 e/A^3 . This (flexible) rule, and rejection of sites unless they were at acceptable distances from their nearest and next nearest neighbours, sufficed to prevent the selection of any new false peaks from F2 onwards.

STRUCTURE REFINEMENT

After the 32 heavier atoms in the molecule had been located their positions were refined by a series of least squares diagonal matrix calculations, using a programme written by R. Diamand. The progress of these calculations is shown in Table 2.

Cycle	Scale factor	Reliability factor, R (%)	$\omega\Delta^{s} \times 10^{-s}$	Max shift (Å)
lso 1	350	27.2	1172782215	C(3)y 0.235
lso 2	320	28.0	1082318101	C(24)y 0.214
Iso 3	355	25-9	1006399487	C(25)y 0.169
Iso 4	320	23.9	766084120	C(27)y 0.118
Iso 5	346	22.3	734069537	O y 0-092
Iso 6	340	22-1	688852110	C(3)y 0.063
Iso 7	339	21.8	677333193	O y 0-035
Aniso 1	317	17-1	240096564	C(23)y 0-067
Aniso 2	321	17.5	263332132	C(3)y 0.062
Aniso 3	295	13.8	111873680	C(1)x 0.053
Aniso 4	299	12.7	89860201	C(3)y 0.031
Aniso 5	293	12.4	83587421	O v 0.029

TABLE 2. PROGRESS OF REFINEMENT OF 2α -bromoarborinone

TABLE 3. FINAL ATOMIC CO-ORDINATES FOR 22-BROMOARBORINONE

	×	у	z		x	у	z
 Br	0.02946	0.21444	0.04082	C(15)	0.39406	-0.38954	0.28967
0	0-22925	0.37538	0.06142	C(16)	0.37517	-0.48034	0-34420
C (1)	0-13969	0.03086	0-11744	C(17)	0.28794	- 0.58727	0.34007
C(2)	0.15776	0.12055	0-06319	C(18)	0.19368	-0.48889	0-32125
C(3)	0-23944	0-24598	0-06996	C(19)	0-10075	0 ·5995 1	0.32619
C(4)	0-34357	0.17207	0-08964	C(20)	0-13155	-0-69276	0.38031
C(5)	0-32601	0-06751	0-14053	C(21)	0-24224	-0·64703	0-39583
C(6)	0-42598	- 0.01295	0-15869	C(22)	0.21164	-0-49720	0.21439
C (7)	0.40692	-0 •08646	0.21855	C(23)	0.26012	-0·18649	0.09006
C(8)	0.32388	-0.21125	0-21547	C(24)	0.29345	- 0-78384	0-42734
C(9)	0.22578	-0-14173	0.18986	C(25)	0-23158	-0-82101	0-47963
C(10)	0-23955	-0.06104	0.13356	C(26)	0-40664	-0·73972	0-44382
C (11)	0-13321	-0-17342	0-21009	C(27)	0.31554	- 0-72289	0.30267
C(12)	0 11316	-0-28785	0-25719	C(28)	0.28605	-0·15766	0.31852
C(13)	0.20803	·-0·39521	0.26697	C(29)	0-39732	0.09740	0.03709
C(14)	0-30291	- 0-28615	0·27303	C(30)	0-41775	0.31278	0.10872

In all these calculations scattering factors, as listed in the International Tables for X-ray crystallography,¹³ were used. The weighting scheme was: w = 1 if $F_0 < F^*$, $w = F^*/F_0$ if $F_0 > F^*$. $F^* = 30$ (isotopric) $F^* = 20$ (anisotropic). A fudge-factor of 0.7 was introduced for cycles Aniso 2-5.

REFINEMENT, CYCLE ANISO 5										
	<i>b</i> 11	b22	633	b12	b23	<i>b</i> 13				
 Br	0-00885	0-04661	0-00446	-0.00119	0-01554	0.00241				
0	0-01341	0.01962	0.00285	-0.00089	0.00568	0.00227				
C (1)	0-00731	0-03234	0.00175	0.00153	0.00770	0-00253				
C(2)	0-00640	0-03510	0-00231	0-00130	0.01122	0-00451				
C(3)	0-00861	0-01966	0-00148	-0.00030	0-00131	-0-00301				
C(4)	0.01088	0.01652	0.00103	0.00102	0.00160	0.00104				
C(5)	0.00779	0-01357	0-00105	0-00007	0.00003	-0.00044				
C(6)	0-00651	0.02107	0.00271	0.00014	0.00585	0.00429				
C(7)	0-00730	0-01191	0.00211	-0.00097	0-00218	-0-00302				
C(8)	0-00405	0-00643	0-00181	-0.00022	-0.00198	-0.00188				
C(9)	0.00583	0.01748	0-00161	0-00006	0.00025	-0.00115				
C(10)	0-00582	0-01653	0-00191	0.00086	0.00199	0.00050				
C (11)	0.00507	0-02253	0.00267	0.00077	0.00047	0-00301				
C(12)	0-00562	0.02238	0.00294	-0.00194	0.00567	-0.00539				
C(13)	0-00390	0-01911	0.00184	-0.00102	0.00029	-0.00075				
C(14)	0-00655	0-01331	0-00112	0.00039	-0-00082	0-00202				
C(15)	0-00484	0-01545	0-00256	0.00029	0-00200	0-00130				
C(16)	0.00627	0-03193	0.00203	0.00075	0-00566	0.01043				
C(17)	0-00691	0-00896	0-00150	0-00035	-0-00028	-0-00154				
C(18)	0.00560	0-01675	0-00160	0.00000	0-00176	-0.00110				
C(19)	0.00784	0-02263	0-00261	0-00103	0-00413	0-01048				
C(20)	0-00543	0.02738	0.00255	0-00060	0-00270	0-00262				
C(21)	0-00825	0.02271	0-00130	0-00021	0.00378	0.00648				
C(22)	0.00995	0.02346	0-00121	-0.00227	-0.00265	-0.01063				
C(23)	0.01278	0-02164	0.00207	0.00141	-0.00181	-0.00082				
C(24)	0-00828	0·02039	0-00180	0-00257	0.00157	-0-00165				
C(25)	0.01994	0.03212	0-00262	-0.00433	0.00900	-0 ·00857				
C(26)	0-01254	0-02869	0-00324	0-00308	0.00775	-0.00116				
C(27)	0.01088	0-01301	0.00201	-0-00108	-0-00183	0-00426				
C(28)	0.01560	0-01336	0.00171	-0.00083	-0.00565	-0.00423				
C(29)	0-01118	0-02717	0.00170	0.00201	0.00230	0.00775				
C(30)	0-00985	0.02653	0.00246	-0.00148	0-00056	-0.00980				

 Table 4. Components of thermal vibration coefficients (bij); anisotropic refinement, cycle aniso 5

The results of these calculations are recorded in the following Tables, 3: atomic positions; 4: thermal vibration parameters; 5: observed and calculated structure factors. The final reliability factor was 12.4% and the magnitudes of the shifts suggested by the last cycle were below the estimated standard deviations in atomic positions.

¹⁸ International Tables for X-ray Crystallography Vol. III. Kynoch Press, Birmingham (1962).

Table 5. Observed and calculated structure factors and phase angles for 2α -bromoarborinone. Each group of three columns after the index number contains 10 \times Fo, 10 \times Fc and phase angle in millicycles

	0,0,1	5.0,L	10 ,0 ,1	1,1,1
A A A A A A A A A A A A A A A A A A A	4 97 146 0 6 394 442 999 8 957 1033 0 C 394 474 0 2 615 657 0 4 141 143 0 6 316 255 0 8 159 143 0 159 143 0 178 62 0 2 85 54 999 1.0.L 3 416 444 750 5 752 757 249 7 544 520 749 8 58 639 750 0 195 183 249 1 433 408 749 2 159 138 749 3 116 92 750 4 427 384 749 1 433 408 749 2 159 138 749 3 164 146 249 4 27 384 749 1 356 295 6 2 870 1274 0 3 35 274 1 356 295 6 2 870 1274 0 3 36 749 2 164 146 249 4 53 735 0 5 390 429 999 6 302 347 999 8 138 81 0 9 226 256 999 1 276 683 0 1 356 295 6 2 870 1274 0 3 38 86 999 4 632 735 0 5 390 429 999 6 302 347 999 8 138 81 0 9 226 256 999 1 128 101 999 2 76 534 0 3 30 429 999 6 302 347 999 8 138 81 0 9 226 256 999 1 128 101 999 2 76 520 0 1 128 101 999 2 76 520 0 3 30 429 999 6 302 347 999 8 138 81 0 9 226 256 999 1 128 101 999 2 76 520 0 3 106 89 0 4 575 520 0 5 360 249 5 350 749 5 360 249 5 517 530 749 5 517 530 749 5 517 530	1 562 735 249 2 560 712 750 3 250 267 249 4 311 356 249 5 150 180 750 6 531 614 244 7 66 56 247 8 222 302 249 9 458 469 743 13 269 749 13 14 128 107 240 15 132 80 749 16 219 174 749 19 51 411 249 20 29 13 749 21 41 51 249 22 72 78 749 25 72 85 249 26 72 89 9 27 283 746 99 26	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		 Proved and the second se		26 56 37 213 27 41 62 762
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0;13;1. 3 706 80.2 750 5 200 171 750 6 762 916 0 7 283 179 750 8 726 6.99 979 9 437 392 249 10 308 273 0 11 398 352 750 12 419 340° 6 13 166 107 249 14 51 55 959 14 51 55 959 16 389 400 995 17 195 155 249 19 200 180 749 20 225 233 6 21 195 153 749	4,1,L C 304 213 247 1 413 419 13 2 177 206 925 3 462 471 17 4 323 391 936 5 344 347 145 6 757 838 31 7 305 279 829 8 431 413 924 9 248 243 957 10 215 182 863 11 283 324 15 12 273 243 957 13 259 282 84 14 299 275 990 15 226 286 985 16 221 192 986 17 125 128 184

18 83 82 803 19 114 101 847 20 41 46 158 21 97 130 58 22 135 125 124 23 51 84 6 24 29 33 172 5 1.L 5 1.12 0 656 636 249 1 260 242 853 2 641 640 269	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 72 89 952 9 59 67 816 11 72 71 2 15,1,1 0 97 115 749 2 29 45 779 4 29 73 213 8 59 71 767 9 29 53 957	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 360 321 754 4 501 467 233 5 813 904 806 6 334 308 756 7 501 520 230 8 210 201 104 9 327 354 203 10 352 353 226 11 93 88 179 12 289 283 182 13 153 164 843 14 217 245 178 15 114 123 913	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 41° 56 95 4 29 56 968 6 29 44 979 0,2,L 3 347 367 750 4 723 885 999 5 238 299 249 6 1031 1072 999 7 753 744 249	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 114 95 814 17 225 220 246 18 97 106 192 19 12 95 35 20 83 91 47 21 72 82 856 22 59 64 233 23 66 53 230 27 41 55 168	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 649 599 0 9 736 558 749 10 182 80 959 11 241 147 750 12 349 366 599 13 386 407 749 14 241 228 0 15 334 309 749 16 51 35 909 18 51 35 909 19 29 44 749 20 72 52 0	4,2,L 0 630 659 C 1 945 780 954 2 942 881 100 3 159 93 71 4 387 301 747 5 604 669 90 6 240 247 206 7 416 410 10 8 398 401 921 9 164 186 235
0 359 227 749 1 8359 836 990 2 477 429 864 3 456 349 9.12 4 426 371 956 5 1.89 162 825 6 182 15.3 846 7 273 959 8 8 272 260 945 9 266 203 984 11 315 300 14 3 210 163 967 4 10 163 967	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
14 137 101 200 15 41 65 940 16 132 106 915 17 150 125 963 18 121 119 798 19 41 77 7 20 110 97 986 21 78 73 139 24 51 69 957 75 66 79 972 7714L 0 247 212 249	11:1:1 0 106 108 749 2 308 274 246 3 250 223 777 4 106 36 127 5 114 92 206 5 161 125 975 7 314 254 765 8 66 57 36 9 208 165 108 10 66 101 808	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 29 42 173 5,72,1 0 539 363 0 1 652 582 185 2 500 377 214 3 482 439 778 4 652 587 69 5 198 177 534 6 295 313 114 7 469 461 952 8 208 183 159 9 247 237 841
1 302 255 857 2 234 203 182 3 247 229 789 4 245 216 86 5 381 394 751 6 93. 87 976 7 409 388 223 6 159 146 53 9 172 189 761 10 177 164 759 11 191 180 59 12 135 106 233 3 2 46 23 256	11 93 107 948 13 41 52 122 14 106 125 829 15 59 54 854 16 83 76 927 17 5° 55 154 18 29 36 243 19 29 48 202 20 29 27 839 12;1:L	24 29 30 184 25 51 50 996 26 29 20 945 2+2+1 0 308 391 0 1 551 603 249 2 572 550 54 3 625 615 240 4 193 164 983 5 370 385 758	10 269 25 116 11 164 297 826 12 293 173 999 13 182 342 911 14 93 152 128 15 213 92 246 16 138 193 136 17 83 136 909 18 51 101 786 19 184 54 151 20 66 154 161 21 83 86 837
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 195 212 G 7 307 348 893 8 189 164 192 9 6044 567 971 10 626 598 956 11 398 343 175 12 530 511 969 13 125 121 222 14 318 291 19 15 141 102 827 16 29 56 141 17 97 72 131	22 77 70 674 23 51 83 10 24 51 72 878 26 29 37 941 27 29 30 751 6,21L 0 292 247 999 1 669 523 862 2 369 275 188 3 715 634 999
8,1,4 0 343 319 750 1 512 421 992 3 236 292 33 4 215 211 793 5 295 294 951 6 215 214 49 8 59 89 183 9 189 160 985 10 141 134 915	13,1,1 U 102 100 749 2 41 65 209 3 41 66 196 5 93 107 211 6 41 75 132 7 88 103 229 14,1,1 4 66 84 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 451 436 186 5 299 360 973 6 204 164 157 7 415 410 659 8 150 146 915 9 267 282 9 10 200 212 816 11 102 128 765 12 223 220 995 14 106 95 180, 15 217 228 913 16 164 188 955 17 161 134 62

.....

19 20 22 24 26	153 41 72 72 72 29 7,	140 66 76 75 13 2,L	59 786 844 990 839	16 17 18 19 20 22	72 59 29 29 41 29	75 83 50 26 41 20	987 49 225 940 803 155	19 20 21 22 23 25 27	128 29 225 29 41 29 29	143 47 218 38 58 50 44	249 0 249 999 249 749 749	11 42 13 14 15 16 17	396 121 179 340 307 202 191	381 111 177 317 285 149 172	13. 960 184 923 916 801 952
0 2 3 4 5 5	691 572 295 298 204 236 51	549 463 277 379 173 210 67	0 801 883 173 875 104 769 914) 1 2 3 4 5 6	132 193 72 29 200 29 179	152 180 94 34 183 55 -168	0 175 230 847 892 768 195	2 2 3 4 5	1, 573 114 184 219 436	3,L 651 86 182 238 347	7 17 184 906 988	18 19 21 22 23 25	135 66 78 29 41 51 51	128 61 87 29 68 52 3+L	972 88 183 892 163 67
7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24	150 41 184 135 320 298 118 204 29 59 153 29 153 29 41 66 41	159 24 158 117 287 59 278 117 188 63 89 133 46 40 62 75 55	914 763 235 806 238 863 192 98 139 896 67 218 896 67 218 811 3 232 874	7 8 9 11 12 13 14 14 16 18 19 21	114 41 241 93 97 128 29 51 59 29 29 29 29 29 29 12 110 114	127 67 214 95 89 114 52 37 65 45 39 55 ,2,L 89 101	827 977 162 805 6 154 958 180 16 860 216 130 9 874	7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25	223 797 270 507 260 327 210 232 249 29 221 221 221 221 221 221 221 221 229 29	213 699 221 489 230 184 212 214 90 200 193 -42 67 124 36 53 44	948 971 865 158 93 227 899 201 955 164 170 990 894 192 215 930 94 192 215 930	0 1 2 3 4 5 6 7 7 8 8 9 10 11 12 13 14 14 15	986 360 407 444 225 382 232 238 243 311 125 243 311 125 326 326 93 326 93 128	827 280 325 414 209 375 64 222 228 236 295 105 213 278 43 115 135	749 794 758 865 792 81 195 5 218 157 5 218 157 988 78 842 871 769 853
0	8, 141 144 102 340 193 388 225	2,L 73 120 116 313 179 338 239	0 14 225 37 757 957 245	3 4 5 6 7 9 10 12 13	125 110 132 106 118 106 83 51	117 86 112 152 99 103 99 71 61	989 756 783 0 79 44 845 945	26 27 0 1 2 3	29 29 2, 102 535 377 289	49 50 3+L 127 466 337 292	838 912 249 101 28 792	17 18 19 20 21 22 24 26	59 186 29 88 51 78 29 29 29	182 47 77 54 71 50 33	975 174 946 25 173 220 989 914
7 8 9 10 11 13 13 14 15 16 17 18 19 20 21 22 23 24	304 391 182 102 29 51 144 72 159 78 106 41 29 51 41 29 25 41 29 25 41	290 328 158 114 32 7 7 135 60 180 98 109 54 38 60 65 18 26 67 2.1	995 775 60 852 975 975 49 61 100 142 872 866 235 944 780 35 944 780 35 944 765	17 18 19 19 1 2 3 4 5 6 7 8 8 10 11 12 13	29 29 29 13 83 88 41 83 29 88 78 88 78 89 29 59 29 29 29 29 29 41 41	39 38 56 ,2,L 93 87 50 79 24 85 85 49 58 59 59 55	838 919 52 770 865 248 778 85 839 218 85 839 218 105 189 180 182 106	4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 8 19 21 22 23	432 432 456 193 210 742 138 200 236 198 208 41 208 41 205 102 102 102 83 29	439 455 157 222 664 93 178 233 183 193 163 194 167 194 85 28 41	845 934 72 151 177 965 166 832 920 38 197 914 863 764 33 963 764 33 119		476 428 332 339 347 200 371 169 169 169 169 174 86 121 114 264 252 5 144	441 372 245 298 357 185 326 128 128 128 128 128 128 129 115 205 231 154 172	249 904 67 896 961 131 873 64 858 45 785 790 235 16 776 9866
0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 18 19 20 21 22 23	9, 66 606 200 240 88 128 129 309 128 209 128 209 128 209 209 209 209 209 209	2,L 67 332 181 243 109 125 179 260 89 132 260 89 223 90 85 52 69 106 39 57 18 43 31	0 786 936 789 123 801 93 181 177 823 123 181 35 74 848 32 197 801 842 841 842 842 855 801	14 17 0 1 2 4 5 6 7 9 10 12 12 14 14 5 9	29 29 14 118 29 29 41 59 51 59 59 29 29 29 29 29 29 15 41 64 41 51 51 51 51 51 51 51 51 51 51 51 51 51	41 35 .2.L 113 27 71 73 60 40 24 47 35 35 35 35 35 35 47 45 45 47 14 45	801 858 9999 797 953 974 212 979 926 48 953 89 89 89 89 89 89 89 757 68 997	24 25 0 1 2 3 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 9 9	29 41 3, 47 573 475 573 475 573 475 495 66 652 51 277 132 240 179 280 179 280 179 280 179 280 179 280 179 280 280 280 280 29 41 280 280 29 29 29 29 29 29 29 29 29 29 29 29 29	58 61 3,L 366 398 537 429 282 482 482 482 108 616 53 220 101 218 286 184 286 184 242 123 332 101 56	118 224 749 949 231 917 905 831 62 234 197 172 69 211 856 856 37 818 816 816 814 814 933 904	11 11 22 22 23 23 24 5 5 5 5 6 6 5 5 5 7 11 11 12 12 12 12 12 12 12 12 12 12 12	191 7 141 3 23 29 29 7 83 88 234 224 336 336 224 174 172 238 247 172 238 206 232 233 144 83 232 7 33	126 89 37 56 756 756 756 78 169 268 169 268 105 224 269 240 215 165 240 240 215 165 25 25 25 25 25 25 25 25 25 2	788 915 771 41 249 63 792 845 66 788 46 755 987 987 987 987 987 987 987 987 987 987
0 1 2 3 4 5 6 7 8 9 10 112 13 15	110 206 29 138 156 305 66 234 150 150 150 150 150 151 29 29 88	0;2,1 103 191 46 197 270 83 230 157 168 75 44 85	999 955 33 980 786 102 94 1608 608 792 130 24 48 956	2 3 4 5 6 6 7 8 9 11 13 14 15 16 18	41 0, 106 125 479 961 358 210 206 221 59 286 335 132	63 3,L 99 119 507 125 926 344 175 204 217 67 242 322 142	977 249 999 249 249 249 249 249 249 249 249	20 21 22 23 24 24 24 24 24 25 6 7 8 9 9 9 10	161 29 93 83 59 4 356 463 727 376 193 200 307 385 396 159	154 57 76 73 59 332 402 644 358 355 170 211 275 326 372 146	749 986 934 834 749 912 890 958 46 822 51 177 980 80 67		114 29 29 8 198 206 262 38 4174 5121 7114 49 72 020 2022 235 2 2	117 16 46 3,1 157 149 260 77 170 100 60 111 56 69 200 242 73	750 844 962 749 18 792 66 240 978 172 882 74 809 961 910

13 29 32 145 14 100 96 793 15 153 165 87 17 29 38 841 18 97 94 133 20 41 48 931 9.3,L 9.3,L 9.3 0 97 62 2.49 2 215 201 953 3 280 233 144 4 192 162 95 7 245 208 178 8 106 117 990 9 191 173 792 14 4 62 133 12 164 174 954 13 29 74 189 14 29 77 140 14 67 197 15 51 59 775 16 29 37	15,3,l. $2 72 75 243$ 0,4,1 $3 226 222 249$ 4 51 11 999 5 51 83 749 6 666 78 999 7 72 49 249 8 86 105 0 9 78 92 249 10 293 319 999 11 110 131 249 12 114 134 . 0 13 323 271 249 15 141 147 249 17 86 79 249 18 93 134 999 19 12 114 134 . 0 13 323 271 249 15 141 147 249 17 86 79 249 18 93 134 999 19 72 72 249 20 29 37 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 37 949 21 22 466 69 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 30 999 26 29 37 999 26 29 37 999 26 29 37 999 26 29 37 999 26 29 37 91 144 161 957 12 220 227 921 13 116 121 966 14 191 166 622 15 191 177 171 16 260 213 181 17 162 34 112 18 102 118 206 19 117 171 16 260 213 181 17 162 34 112 18 102 118 206 19 117 171 10 234 112 28 44 1 33 338 353 750 4 254 258 803 5 265 288 199 6 114 133 149 7 72 6 5120 9 7 78 13 319 312 650 12 317 6 852 13 83 59 203 14 206 199 51 200 9 77 20 120 207 90 2 9 77 20 120 207 90 2 9 77 20 120 22 79 21 3 83 59 203 3 8 720 3 4 260 499 95 1 7 200 208 203 3 8 72 74 99 23 29 33 867 24 22 91 17 91 23 29 11 79 161 71 72 72 6 1 66 808	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 >>>> 2 4 0 51 57 249 2 98 91 176 3 83 84 68 4 83 74 78 5 59 47 840 6 51 50 954 7 66 64 123 10 51 65 199 12 41 50 828 13 29 43 246 14,73,L 1 29 43 960 2 41 49 157 3 29 49 807 3 29 49 807 4 83 84 976		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

13 15 16 17 18 19 20 21 22 23	153 106 128 132 102 78 78 78 78 29 41 41 66	171 93 119 133 117 54 56 24 32 43 40 5.L	249 0 249' 999 749 599 749 999 749 749 0 749	14 15 16 17 18 19 21 22 24	147 78 141 51 29 93 51 29 29 29 29	129 75 124 55 58 95 08 29 72 5,1	779 159 825 167 64 89 59 924 804	6 7 10 13 15 16 17 16 17 18 19	83 121 114 51 41 29 29 41 29 11	73 99 104 84 53 45 50 59 52 1,5,L	974 53 974 230 161 96 226 963 952	9 1 2 3 4 5 7 7 8	3 78 72 29 184 78 118 78 121 102	,6,L 82 67 14 175 71 118 63 91 109	0 773 28 34 867 79 199 822 978
2 3 4 5 6 7 8 9 10 11 2 3 15 16 7	51 260 88 66 102 217 144 192 156 240 97 377 141 29 138	54 227 79 88 120 211 136 150 122 216 127 259 135 40 140	906 55 38 123 210 222 905 202 782 973 140 958 909 141	1 2 3 4 5 6 7 7 9 11 12 13 15 16 17	I 67 83 14 322 210 193 316 255 516 217 29 41 97 29 29 29 29	130 58 104 248 213 199 292 254 498 199 199 254 498 199 88 46 39 88 47 43	953 114 928 929 164 142 944 142 944 142 944 142 944 142 944 142 944 142 944 142 944 142 944 144	1 2 4 5 6 7 8 9 10 11 13 14 14 15 16 17	102 114 93 29 51 66 41 41 72 51 29 29 51 29	53 108 85 56 61 74 55 44 67 65 52 46 25 79 54	299 71 132 228 227 105 998 225 947 750 774 886 156 103 200 919	10 11 12 13 14 16 17 18 19 22 21 23	193 93 125 150 29 102 88 59 59 59 93 29 78 29 78 29	78 120 148 29 107 77 64 63 88 34 88 34 82 44	913 192 227 877 131 104 89 38 840 77 907 135
18 19 20 22 23 24 25	128 29 88 56 29 41 29	107 40 91 66 41 50 47	214 860 165 764 64 207 37	19 20 24	29 88 29 6,1 78 88	19 76 19 5.L 67 88	39 57 55 249 48	0	12 97 0, 147 51	,5,1 74 6,1 154 68	249 249	3 5 6 7 8 9 10	169 147 164 179 110 128 213 200 93	139 127 169 164 114 133 209 184 74	76 205 894 888 85 907 756 752 954
0 1 2 3 4 5 6 7 9 10 11	2, 106 186 97 156 128 29 51 401 102 208 102 208 118 223	5;L 91 193 113 130 155 80 145 382 96 190 190 219	249 980 820 907 861 936 911 144 980 764 980 764 764	2 3 4 5 6 7 8 9 10 11 12 13 13 14 17	144 51 240 184 156 78 210 267 121 125 204 41 114 93	151 12 232 150 157 65 180 254 104 131 215 61 125 63	818 808 223 778 800 869 888 45 145 785 873 903 880 210	5 6 7 8 9 10 11 12 13 14 16 17 18 20	88 110 29 97 110 347 177 78 248 221 114 51 78	81 103 16 62 115 329 145 106 264 208 87 48 82 82	249 999 749 0 749 999 749 999 749 999 0 749 0 749 0	11 12 13 14 15 16 17 17 18 20 21 22 23	106 121 66 83 88 29 51 88 59 29 29 29 29 29 29 29	107 99 53 72 84 51 58 94 65 51 32 14 6,1	152 157 137 928 157 985 946 841 864 94 4 825
12 -13 14 15 16 17 19 21	269 125 232 114 144 118 128 114	213 117 213 117 120 79 113 99	880 913 926 799 884 129 182 234	14 12 22 20	59 72 29 29 7, 141 93	83 73 55 56 57L 96 63	781 193 94 916 	2	1 29 29 1 1	33 42 27 6+L 125 110 81	249 - D 249 - 35 - 120 - 129	8 1 2 3 4 5 5 7	110 78 118 93 156 88 29 213	124 93 134 66 143 82 45 193	0 907 103 74 985 760 781 879
23 24 0 1 22 3 4 5 6 7 8	29 51 3, 177 195 114 260 72 225 41 182 360	38 62 5,L 195 165 118 245 62 234 234 177 334	75 82 249 54 825 887 214 915 69 5 107	2 3 4 5 10 11 12 13 15 17	118 121 83 78 273 59 153 132 118 128 76 97 29	116 113 97 92 284 77 161 149 122 117 95 103 56	946 241 852 51 2 110 879 7 971 23 838 796 237	2 5 6 7 8 9 9 10 11 12 13 14 15 14	63 141 186 29 213 59 118 179 135 135 118 93 125 110 68	153 183 33 219 67 123 159 117 112 87 125 106 87	127 760 945 766 92 9 908 188 944 906 779 175 916 849	8 9 10 11 12 14 15 17 17 19 21	153 41 83 78 110 59 41 51 51 29 6;	159 41 61 10 51 58 42 50 25 6,L	973 949 766 965 52 953 859 958 128
9 10 11 13 14 15 16 17	121 223 243 156 97 206 118 156	139 204 183 157 78 168 118 132	800 179 29 851 39 896 224 873	10 19 20 21 22	59 29 29 51 8,	74 62 51 31 85 5 <i>t</i> L	40 799 76 904 995	17 19 21 22 23 24	135 114 51 59 29 29	122 112 33 63 51 64	902 101 20 199 966 925	1 2 3 4 5 6 7 8	138 78 29 59 144 247 110 41	94 94 30 76 140 251 128 39	778 244 916 879 904 231 819 919
20 21 23 24 25	88 29 41 51 29 29	80 60 46 57 65	209 945 968 954 759	0 2 3 5 6 7 8 9 10	128 114 106 135 83 93 110 59	107 58 85 111 65 93 107 78	249 889 981 88 821 110 941 780 881	1 2 3 4 5 6 8	83 159 88 135 83 88 78 182	69 197 74 134 102 71 66	0 849 233 108 179 593 22 973	10 11 13 14 15 16 17 18 20	41 29 121 29 97 29 29 29 29 29 51	48 22 118 39 86 66 47 30 95	838 218 102 888 72 840 192 768 906
0 1 2 3 4 5 6 7 8	314 144 200 326 223 326 179 172 184	309 123 204 297 193 293 166 137 193	249 840 808 12 181 926 223 860	11 12 14 15 16 18 20	118 41 78 41 29 59 29	115 53 73 21 50 60 60	91 174 223 811 758 249 940	10 11 12 13 14 15 16 17 18	167 208 51 102 106 121 93 78 78	147 170 67 104 94 137 70 62 70	131 92 51 929 960 176 841 225 980	21 0 2 3 5 6 7	29 7, 88 118 29 102 59 29	6,L 80 112 74 73 61 43	770 895 83 23 121 121
9 10 11 12 .13	267 132 255 102 29	257 128 276 95 68	203 996 957 785 855	1 2 4 5	102 121 141 114	53 129 114 104	967 55 6 769	20 22 23 24	41 93 72 29	43 91 78 41	967 919 210 788	8 9 10 11	78 125 51 29	76 97 75 20	795 813 977 222

57 S.

DISCUSSION

The stereochemical features of the molecule, as established in the present investigation, are shown in Fig. 2. The electron density distribution computed from the final least squares parameters is illustrated in Fig. 3.

Table 6 lists the interatomic distances obtained after the last FATAL cycle and at the end of the analysis. Average values from the final refinement for the carbon carbon bond are: sp^3-sp^3 1.514 Å (over 28 values) and sp^2-sp^3 1.502 Å (over 5 values). The C=O bond is comparatively short but similar distances of 1.15 Å and 1.20 Å were found in giberellic acid¹⁴ and in 4-bromoestrone¹⁵ respectively.

¹⁴ J. A. Hartsuch and W. N. Lipscomb, J. Amer. Chem. Soc. 85, 3414 (1963).

¹⁵ D. A. Norton, G. Kartha and C. Tang Lu, Acta Cryst. 16, 89 (1963).

FIG. 2. The molecule of 2α bromoarborinone. Numbering of atoms relates to Tables 3, 4, 6, 7.

FIG. 3. Composite electron density map showing the four molecules of 2α -bromoarborinone related by the three sets of screw axes in the unit cell. Contours at intervals of $le/Å^a$ except around the bromine atoms, which are indicated by solid centres. Lowest contour $le/Å^a$.

Rings A, B and D are in the chair form and C(22) and C(28) in the *trans* configuration. Atoms C(22), C(13), C(14), C(28) are coplanar.

The bromine atom is coplanar with C(2), C(3), C(4) and O to within 0.05 Å and is 2.96 Å distant from the oxygen atom. There is some distortion of bond angles around the oxygen atom in the direction of maximal O-Br separation. In ring C atoms 8, 9, 11 and 12 are coplanar to 0.02 Å.

Four of the five carbon atoms in ring E are coplanar to within 0.05 Å with C(17) displaced 0.74 Å from the mean plane. It is interesting to note that as a rule in molecules containing fused five- and six-membered ring systems four atoms of the fivemembered ring are strictly coplanar while one of the two atoms common to the two

	Final FATAL Cycle R = 26.5%	Final L.S. Cycle R == 12.2%
BrC(2)	2·02 Å	1-91 Å
C(1) - C(2)	1.31	1.46
C(1) -C(10)	1.62	1.55
C(2) -C(3)	1.45	1.52
C(3) -C(4)	1.47	1.55
C(4) –C(29)	1.56	1.51
C(4) -C(30)	1-57	1.61
C(4) -C(5)	1-49	1-49
C(5) -C(10)	1.55	1.57
C(5) -C(6)	1-47	1.51
C(6) -C(7)	1.53	1.51
C(7) -C(8)	1-43	1.52
C(8) –C(9)	1.57	1.51
C(8) - C(14)	1.57	1.47
C(9) -C(10)	1.45	1-46
C(9) -C(11)	1-35	1.30
C(10)-C(23)	1.39	1-49
C(11)-C(12)	1.46	1.47
C(12)-C(13)	1-54	1.55
C(13)-C(22)	1.54	1.51
C(13)-C(14)	1.55	1.55
C(13)-C(18)	1.55	1.48
C(14)-C(28)	1.49	1.53
C(14)-C(15)	1.53	1.52
C(15)-C(16)	1.51	1.48
C(16)-C(17)	1.44	1.46
C(17)-C(18)	1.57	1.54
C(17)-C(27)	1-48	1.49
C(17)-C(21)	1.40	1.48
C(18)-C(19)	1.57	1.54
C(19)-C(20)	1.54	1.51
C(20)-C(21)	1.52	1.52
C(21)-C(24)	1.58	1.53
C(24)-C(25)	1.48	1.45
C(24)-C(26)	1.53	1.55
C(3) –O	1.33	1.12

TABLE 6. INTERATOMIC DISTANCES FOR 2a-BROMOARBORINONE

ring systems is out of plane by a distance close to that found in 2α -bromoarborinone. Hartsuch and Lipscomb¹⁴ find such a displacement of 0.71 Å in giberellic acid, Abrahamsson¹⁶0.71 Å in prostalglandin F_{s-1} and the present authors 0.70 in tomatidine hydrobromide.¹⁷ We have also calculated from published co-ordinates the geometry of such systems in 7-bromocholesteryl chloride¹⁸ where the four atoms are coplanar to 0.10 Å and the fifth displaced by 0.7 Å; while in lanosteryl iodoacetate¹⁹ the displacement is 0.5 Å and the remaining atoms are coplanar to 0.03 Å.

- ¹⁴ S. Abrahamsson, Acta Cryst. 16, 409 (1963).
- ¹⁷ O. Kennard, L. Riva di Sanseverino and J. S. Rollett, to be submitted to J. Chem. Soc.
- ¹⁸ H. Burki and W. Nowacki, Z. Kristallog, 108, 206 (1956).
- ¹⁹ J. Friedrichson and A. McL. Mathieson, J. Chem. Soc. 2159 (1953).

Br -C(2) -C(1)	108-05	C(12)-C(13)-C(14)	105-27
Br -C(2) -C(3)	108-35	C(12)-C(13)-C(18)	110-49
C(2) -C(1) -C(10)	109-63	C(12)-C(13)-C(22)	106-61
C(1) -C(2) -C(3)	114.00	C(14)-C(13)-C(18)	111-23
C(2) -C(3) -C(4)	109-09	C(14)-C(13)-C(22)	115-06
C(2) -C(3) -O	127-43	C(18)-C(13)-C(22)	108-04
C(4) -C(3) -O	123-46	C(8) -C(14)-C(13)	109-67
C(3) -C(4) -C(5)	110-23	C(8) -C(14)-C(15)	109-61
C(3) -C(4) -C(30)	105-87	C(8) -C(14)-C(28)	106-93
C(5) -C(4) -C(29)	113.72	C(13)-C(14)-C(15)	105-41
C(5) -C(4) -C(30)	110-94	C(13)-C(14)-C(28)	113-05
C(29)-C(4) -C(30)	105-25	C(15)-C(14)-C(28)	112-15
C(4) -C(5) -C(6)	111.06	C(14)-C(15)-C(16)	113-09
C(4) -C(5) -C(10)	117.76	C(15)-C(16)-C(17)	114-40
C(6) -C(5) -C(10)	108-23	C(16)-C(17)-C(18)	105·56
C(5) -C(6) -C(7)	107-08	C(16)-C(17)-C(21)	118-31
C(6) -C(7) -C(8)	111.98	C(16)-C(17)-C(27)	110-89
C(7) -C(8) -C(9)	108-52	C(18)-C(17)-C(21)	96 ·62
C(7) -C(8) -C(14)	113.75	C(18)-C(17)-C(27)	118-06
C(9) -C(8) -C(14)	110-99	C(21)-C(17)-C(27)	107-20
C(8) -C(9) -C(10)	114-93	C(13)-C(18)-C(17)	115.70
C(8) -C(9) -C(11)	122-98	C(13)-C(18)-C(19)	120-05
C(10)-C(9) -C(11)	121-05	C(17)-C(18)-C(19)	104-14
C(1) -C(10)-C(5)	104-35	C(18)-C(19)-C(20)	100-91
C(1) -C(10)-C(9)	110-45	C(19)-C(20)-C(21)	106-91
C(1) -C(10)-C(23)	111-69	C(17)-C(21)-C(20)	105-51
C(5) -C(10)-C(9)	109.64	C(17)-C(21)-C(24)	119-53
C(5) -C(10)-C(23)	116.89	C(20)-C(21)-C(24)	107.84
C(9) -C(10)-C(23)	103.87	C(21)-C(24)-C(25)	108-05
C(9) -C(11)-C(12)	123-52	C(21)-C(24)-C(26)	108.77
C(11)-C(12)-C(13)	111.70	C(25)-C(24)-C(26)	112.02

TABLE 7. 22-BROMOARBORINONE BOND ANGLES

The consistency of the bond distance values is reasonably satisfactory, particularly since the main aim of the analysis was to establish the gross chemical structure and the individual intensity readings on which the analysis was based were of moderate accuracy only. The convergence of the refinement is probably due to the comparatively high percentage of the reflections within the reciprocal sphere which were measured. There was little change in the bond distances (Table 6) and in atomic positions during the least squares refinement, except for atoms nearest to Br. The average co-ordinate changes were 0.031 Å in the x, 0.05 Å in the y and 0.033 Å in the z direction. The maximum movement was 0.147 Å in the y co-ordinate of C(3). Essentially the structure was solved with the FATAL group of calculations and the least squares computations were mainly concerned with refining the amplitudes of the thermal vibrations.

The list of bond angles is given in Table 7. The average tetrahedral angle over 29

measured values excluding those of ring E was 110-1°. The strain imposed on the D/E ring junction was evident from the bond angles, particularly around C(18).

The molecules in the crystal are held by van der Waal's attractions only. Distances less than 4 Å are given below.

C(26)C(29) 3.50 Å	BrC(25) 3.74 Å
C(3)C(23) 3.64 Å	BrC(29) 3.87 Å
C(2)C(23) 3.97 Å	BrC(16) 3-99 Å
C(29)C(23) 3.97 Å	OC(29) 3-35 Å
C(25)C(21) 3.99 Å	OC(23) 3·47 Å
	OC(2) 3.80 Å

Taking the van der Waal's radius of the methyl group as 2-0 Å and that of oxygen as 1-40 Å the shortest distances are that from one of the methyl groups attached to ring A (C29) to the neighbouring isopropyl methyl group C(26) and that from C(29) to a neighbouring oxygen atom.

CALCULATIONS

The following computers were used in the calculations described in this paper.

Data reduction	"Pegasus"	University College, London
"FATAL"	"Mercury"	Computing Laboratory, Oxford
Least squares	"Atlas"	Institute of Computer Science, London
	"Atlas"	Science Research Council, Harwell
Molecular geometry	"Titan"	Mathematical Laboratory, Cambridge
Fourier synthesis	"IBM 7090"	Imperial College, London

Our thanks are due to the Directors and Staff of the above Units for their help in providing computing facilities.

Acknowledgements—We should like to thank Professor C. Djerassi and Dr. H. Vorbrüggen for suggesting and collaborating with us in this work, Professor Lord Todd for helpful discussions, Drs Diamand, Milledge, Mathewman, Martin, Busing, Levy and Stewart for the computer programmes, Mr. B. Kelly and T. Scott of the M. R. C. Computer Unit and Dr. D. G. Watson for their assistance with running the calculations and Mrs. J. Dye for technical assistance. A British Council Scholarship to one of us (L. R. S.) is also gratefully acknowledged.